Algèbre - L2 Informatique Série Applications linéaires

Exercice 1. Les applications suivantes sont-elles linéaires? Préciser celles qui sont des endomorphismes et celles qui sont des forme linéaires.

1.
$$f_1: \mathbb{R}^4 \to \mathbb{R}^2 \quad (x, y, z, t) \mapsto (x - 1446z + t + 2025, x - 2y + z + 2t)$$

2.
$$f_2: \mathbb{R}^2 \to \mathbb{R}^2 \quad (x,y) \mapsto (xy, x-y)$$

3.
$$f_3: \mathbb{R}^3 \to \mathbb{R}^2 \quad (x, y, z) \mapsto (x - y + z, x - 2y)$$

4.
$$f_4: \mathbb{R}^3 \to \mathbb{R}^3 \quad (x, y, z) \mapsto (x - y, y, x + y + 5z)$$

5.
$$f_5: \mathbb{R}^3 \to \mathbb{R} \quad (x, y, z) \mapsto x + 1446y - z$$

Exercice 2. Considérons l'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ $(x, y, z) \mapsto (x + 2y - z, 2x + y - 5z)$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer Ker(f) et la dimension de Ker(f).
- 3. En déduire que f n'est pas injective.

Exercice 3.

Considérons l'application $g: \mathbb{R}^3 \to \mathbb{R}^3 \ (x,y,z) \mapsto (x-y-z,y-z-x,z-2x+2y)$

- 1. Montrer que g est un endomorphisme.
- 2. Déterminer Ker(g) et une base de Ker(g).
- 3. g est-elle injective? surjective? bijective?
- 4. En déduire la dimension de Im(g).
- 5. Déterminer $\operatorname{Im}(g)$ et montrer que $\operatorname{Ker}(g)$ et $\operatorname{Im}(g)$ sont supplémentaires.

Exercice 4. Soient $f: \mathbb{R}^{1918} \to \mathbb{R}^{1914}$ et $g: \mathbb{R}^{1939} \to \mathbb{R}^{1945}$ deux applications linéaires.

- 1. Montrer que f est non injective.
- 2. Montrer que g est non surjective.

Exercice 5. Montrer que les données suivantes définissent une unique application linéaire que l'on déterminera :

1.
$$\Phi(1,1,1) = (1,2,5)$$
; $\Phi(-1,1,1) = (1,0,-1)$; $\Phi(-1,1,-1) = (0,1,2)$

2.
$$\Psi(1,2,1) = 4$$
; $\Psi(0,1,1) = -2$; $\Psi(0,-1,2) = 3$

Exercice 6.

On considère l'application $\Psi: \mathbb{R}^3 \to \mathbb{R}^3 \quad (x, y, z) \mapsto (x - y, x + y, x - y + 3z).$

- 1. Montrer que Ψ est endomorphisme.
- 2. Déterminer $Ker(\Psi)$.
- 3. En déduire que Ψ est un automorphisme.
- 4. Déterminer les applications Ψ^{-1} et $\Psi \circ \Psi$.

Exercice 7. Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}_{\mathbb{R}}(E)$. On pose

$$E_{+} = \{X \in E : f(X) = X\} \text{ et } E_{-} = \{X \in E : f(X) = -X\}$$

- 1. Montrer que E_{-} et E_{+} sont des sous-espaces vectoriels de E.
- 2. Déterminer $E_- \cap E_+$.
- 3. Si de plus on admet que $f^2 = Id_E$, alors montrer que $E = E_- \oplus E_+$.